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Abstract 
Recent studies have focused on gender differences in movement 
patterns as risk factors for ACL injury. Understanding intrinsic 
and extrinsic factors which contribute to movement patterns is 
critical to ACL injury prevention efforts. Isometric lower-
extremity muscular strength, anthropometrics, and jump-landing 
technique were analyzed for 2,753 cadets (1,046 female, 1,707 
male) from the U.S. Air Force, Military and Naval Academies.  
Jump-landings were evaluated using the Landing Error Scoring 
System (LESS), a valid qualitative movement screening tool. 
We hypothesized that distinct anthropometric factors (Q-angle, 
navicular drop, bodyweight) and muscle strength would predict 
poor jump-landing technique in males versus females, and that 
female cadets would have higher scores (more errors) on a 
qualitative movement screen (LESS) than males. Mean LESS 
scores were significantly higher in female (5.34 ± 1.51) versus 
male (4.65 ± 1.69) cadets (p < 0.001). Qualitative movement 
scores were analyzed using factor analyses, yielding five factors, 
or “patterns”, contributing to poor landing technique.  Females 
were significantly more likely to have poor technique due to 
landing with less hip and knee flexion at initial contact (p < 
0.001), more knee valgus with wider landing stance (p < 0.001), 
and less flexion displacement over the entire landing (p < 
0.001). Males were more likely to have poor technique due to 
landing toe-out (p < 0.001), with heels first, and with an asym-
metric foot landing (p < 0.001). Many of the identified factor 
patterns have been previously proposed to contribute to ACL 
injury risk. However, univariate and multivariate analyses of 
muscular strength and anthropometric factors did not strongly 
predict LESS scores for either gender, suggesting that changing 
an athlete’s alignment, BMI, or muscle strength may not directly 
improve his or her movement patterns.   
 
Key words:  Jump-landing, ACL injury risk, motor patterns, 
qualitative movement screen. 
 

 
 

Introduction 
 
Injury to the anterior cruciate ligament (ACL) is a com-
mon and devastating injury in young, active populations.  
The risk of non-contact ACL injury for females is more 
than twice that of males in many sports (Engstrom et al., 
1991; Arendt and Dick, 1995; Bjordal et al., 1997; Arendt 
et al., 1999).  Despite previous work suggesting specific 
movement patterns may be responsible for much of the 
increased ACL injury risk in females (Hewett et al., 1999; 
Mandelbaum et al., 2005; Onate et al., 2005), the reasons 
for this marked disproportion in risk between genders 
remains an area of active investigation.  Gender-specific 
differences have been shown during the performance of 

common athletic tasks such as cutting, stopping, and 
jumping (Malinzak et al., 2001; Chappell et al., 2002; 
Decker et al., 2003; Ferber et al., 2003; Ford et al., 2005; 
Chappell et al., 2007).  Specific variations in movement 
patterns during the early landing phase following a jump 
have also been established (Chappell et al., 2002; Ford et 
al., 2003; Chappell et al., 2007) and are particularly im-
portant since landing from a jump is the most common 
mechanism for ACL injury in both genders (Shimokochi 
and Shultz, 2008).  Traditionally differences in movement 
patterns have been evaluated using laboratory biome-
chanical measurements.  However such methods are im-
practical for screening large cohorts.  The ability to iden-
tify high-risk movement patterns in a large population 
using a quicker but reliable alternative, such as a qualita-
tive movement screen, is crucial for large-scale injury 
screening and prevention efforts. 

If movement patterns are important risk factors for 
injury, then understanding how anthropometric traits and 
muscle strength influence these patterns is also important.  
Previous studies have found that female athletes have 
more navicular drop, larger Q-angles, weaker hamstrings 
and different ratios of quadriceps/hamstrings strength than 
male athletes (Colby et al., 2000; Lephart et al., 2002; 
Myer et al., 2009).  Women also land from a jump with 
less knee flexion and more knee valgus than population-
matched males (Ford et al., 2003; Chappell et al., 2007), 
which has been theorized to increase their risk of ACL 
injury.  But the relationship between 
anthropometrics/strength variances and differences in 
knee flexion/valgus motion is not known.  In other words, 
we do not know if women land with less knee flexion and 
more knee valgus because of their larger Q-angles, in-
creased navicular drop and decreased quadri-
ceps/hamstring strength ratios—or if differences in female 
movement patterns are primarily due to other factors.  In 
part, this is because previous studies of athletic movement 
and anthropometrics have been in small cohorts with 
insufficient statistical power to perform these analyses 
(Fagenbaum and Darling, 2003; Chappell et al., 2007; 
Hughes et al., 2008).  A large cohort analysis of jump-
landing movement patterns, muscular strength, and an-
thropometrics could establish if strength and anthropom-
etric factors predict specific landing movement patterns.  

The main purpose of this paper was to use a quali-
tative movement screen to assess the jump-landing char-
acteristics of a large cohort of young individuals at high 
risk for musculoskeletal injury.  We analyzed the jump-
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landings of 2,753 physically-active military cadets using 
the Landing Error Scoring System (LESS).  Additionally, 
we employed factor analysis to determine which landing 
patterns tended to exist concurrently.  We used regression 
techniques to determine if anthropometric factors (BMI, 
navicular drop, Q-angle) and lower-extremity muscle 
strength contributed to observed differences in landing 
movements. We hypothesized that female cadets would 
have higher scores (more errors) on the qualitative 
movement screen (LESS) than male cadets and that the 
strength and anthropometric factors contributing to spe-
cific movement patterns would be different for male and 
female cadets.  
 
Methods 
 
Data was collected as part of a larger project, the JUMP-
ACL study.  JUMP-ACL is a prospective cohort study of 
risk factors for ACL injury that enrolled subjects over a 5-
year time period.  This paper addresses one of the specific 
aims of the JUMP-ACL study, to describe gender differ-
ences in landing movements, in relation to anthropomet-
rics and muscle strength.   

 
Subjects 
2,753 cadets (n = 1,046 females, n = 1,707 males, ages 
18-24; 38% of entering population during study period) at 
the U.S. Air Force, Military and Naval Academies par-
ticipated in the study during their initial summer of train-
ing at the academies.  Informed consent was obtained 
from each participant in accordance with each institu-
tion’s review board.  Cadets with a musculoskeletal injury 
to the lower extremity or who were otherwise unable to 
perform the study tasks at the time of data collection were 
excluded.  

 
Anthropometrics 
Subject anthropometrics and postural alignment were 
obtained, including height, weight, BMI, navicular drop 
and Q-angle. A group of Certified Athletic Trainers (ATs)  
who travelled to each study site assessed all measure-
ments   using   uniform   procedures. In order to minimize  

collection error, all ATs received standardized training 
and had to pass a validation assessment before collecting 
field data. Navicular drop was assessed using a modifica-
tion of the Brody method, and measured the vertical 
change in the position of the navicular tuberosity from a 
sitting to standing position (Brody, 1982). Static standing 
Q-angle was measured with a standard long-arm go-
niometer. The centre of the patella, apex of the anterior 
superior iliac spine (ASIS) and tibial tuberosity were 
marked with a permanent marker for visual reference 
during measurement (Woodland and Francis, 1992). The 
stationary arm was placed in line with the ASIS while the 
rotating arm in line with the tibial tubercle and the angular 
measurement in degrees was recorded. Three separate 
readings for each measurement were recorded and aver-
aged. Intrarater reliability from pilot data showed good 
reliability for both navicular drop (intraclass correlation 
coefficient [ICC]2,k = 0.79) and Q-angle (ICC2,k = 0.83). 

 
Muscle strength  
Isometric strength of the major muscles of the lower ex-
tremity was assessed using a hand-held dynamometer 
(NexGen Ergonomics, Quebec, Canada).  Mean and peak 
isometric strength of the hamstrings, gluteus maximus, 
gluteus medius, quadriceps, hip external rotators, and hip 
internal rotators were assessed. The mean force measure-
ment from two 5-second trials was averaged together. All 
strength values were recorded in Newtons and normalized 
to the subject’s body weight (Newtons/weight in kilo-
grams*9.807) before averaging.  Intrarater reliability 
(ICC2,k) ranged from 0.73 to 0.98.  The full description of 
the muscle testing techniques can be found in Table 1.   

 
Landing technique: the Landing Error Scoring Sys-
tem (LESS) 
Subjects performed a double-leg jump from a 30cm plat-
form, landing out in front of the platform with both feet at 
a distance of approximately half their body height and 
then immediately jumping upwards as high as possible 
(Figure 1). Subjects were given verbal instruction on the 
task and allowed two practice jumps before the three 
jump trials were recorded. If the subject did not jump to

 
Table 1. Lower extremity muscle strength testing techniques. 

Muscle Group Description of Testing Technique 
Quadriceps   Subject seated, test leg in 90° of knee flexion.  The dynamometer was placed over the anterior aspect of 

the subject’s shank just proximal to the ankle joint.  The subject was instructed to extend their knee 
with maximal effort.  

Hamstrings Subject prone, test leg in 90° of knee flexion.  The dynamometer was positioned over the posterior 
aspect of the subject’s shank just proximal to the ankle joint.  The subject was instructed to flex their 
knee with maximal effort.   

Hip External Rotators   Subject prone, test leg in 90° of knee flexion and neutral hip rotation.  The dynamometer was placed 
over the medial aspect of the subject’s shank just proximal to the ankle joint.  The subject was in-
structed to externally rotate their hip with maximal effort.   

Hip Internal Rotators Subject prone, test leg in 90° of knee flexion and neutral hip rotation.  The dynamometer was placed 
over the lateral aspect of the subject’s shank just proximal to the ankle joint.  The subject was in-
structed to internally rotate their hip with maximal effort. 

Gluteus Maximus Subject prone, test leg in 90° of knee flexion.  The dynamometer was placed over the posterior aspect 
of the subject’s thigh just proximal to the knee joint line.  The subject was instructed to extend their hip 
with maximal effort while keeping their knee in the flexed position.   

Gluteus Medius Subject side lying, test leg in neutral hip extension and aligned parallel with their torso.  The dyna-
mometer was placed over the lateral aspect of the subject’s thigh just proximal to the knee joint line.  
The subject was instructed to abduct their hip with maximal effort.   
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Figure 1. Jump-Landing Task: Participants jumped from a 30cm high box onto a forceplate and then immediately 
rebounded back up in a maximal jump. 
 

the required horizontal distance or did not vertically jump 
after the initial landing, that trial was discarded and the 
jump-landing manoeuvre repeated.   

Two tripod-mounted digital camcorders recorded 
a frontal and sagittal view of each jump, at a distance of 
16 and 13 feet, respectively. Cameras were levelled using 
the built-in level on each tripod.  All jump-landing videos 
were analyzed at a later time by trained raters using the 
Landing Error Scoring System (LESS) (Boling et al., 
2005; DiStefano et al., 2009; Padua et al., 2009). The 
LESS is a clinical assessment tool that reliably identifies 
individuals with potentially high-risk biomechanics 

(Padua et al., 2009). Jump-landing quality is assessed by 
analyzing videotapes of the jump-landing task in the sag-
ittal and frontal planes. Scoring is based on the presence 
or absence of specific landing characteristics as described 
in the Appendix. Individually scored items are totalled to 
create an overall LESS score (range 0-17), with higher 
scores (more errors) indicative of higher-risk landing 
technique.  Overall LESS scores were averaged over three 
valid jump trials for analyses.  
 
Data analysis 
Independent t-tests were used to compare gender mean 
differences for subject anthropometrics, strength values, 
and overall LESS score. Separate univariate and multi-
variate linear regressions were used to determine the 
predictive validity of subjects’ anthropometrics and mus-
cle strength using overall LESS score as the dependent 
variable.  Individual models for males and females were 
fit so as to assess gender-specific relationships.   

Additionally, factor analysis was performed on in-
dividual LESS items to identify inter-related movement 
errors [For factor analysis, a positive score on individual LESS 
items was defined as an Error if was judged to occur on at least 
2 of 3 trials (items 1-15)]. We used varimax rotation and 
iterated analyses. Two “general purpose” items on the 
LESS (#16 and #17) were excluded from analysis because 
of possible collinearity with the other 15 items.  Regres-
sion diagnostics indicated no collinearity in the remaining 
LESS items (largest condition index of 4.6).  Pooled vari-
ance t-tests were used to compare factor means between 

genders as well as factor frequency by gender.  The sig-
nificance level for all analyses was set a priori at α = 0.05. 
 
Results 
 
Landing technique: the Landing Error Scoring Sys-
tem (LESS) 
Total overall Landing Error Scoring System (LESS) 
scores were significantly different (p < 0.001) for males 
and females.  Males’ mean score was 4.65 ± 1.69 (Range 
0.00-10.67). The mean score for females was 5.34 ± 
1.51(range 0.33-11.00). 

Factor analysis is a statistical method used to detect 
structure in the relationships between variables, or in 
other words, identify patterns among the observed vari-
ables. Using data from individual LESS items, factor 
analyses revealed five groups of related errors (orthogonal 
factors):  Factor 1 - decreased sagittal trunk, hip and knee 
flexion at initial ground contact (LESS Items L3, L2,and  
L1); Factor 2 - valgus knee and feet wide at initial contact 
(Items L5 ,L15, and L7); Factor 3 - toes out and knees 
flexed at initial contact (Items L10 and L1); Factor 4 - 
heelstrike landing and asymmetric footstrike landing; 
(Items L4 and L11) and Factor 5 - less sagittal flexion 
over the landing phase (Items L12, L13, and L14).  These 
five  factors  all  had  Eigenvalues  greater than one, and 
collectively accounted for 67% of the covariance between 
the 15 LESS items.   
Pooled variance t-tests between genders on these 5 factors 
showed that females were significantly more likely than 
males to land with: less hip and knee flexion at initial 
contact (Factor 1, p < 0.001); more knee valgus and wider 
landing stance (Factor 2, p < 0.001); and less flexion 
displacement over the entire landing phase (Factor5, p < 
0.001). Males were more likely than females to land with 
toe-out (Factor 3, p < 0.001) and had a higher prevalence 
of heel landing and asymmetric foot landing (Factor 4, p 
< 0.001) (See Table 2). 
 
Anthropometrics and strength 
Anthropometrics by gender are given in Table 3.   Muscle 
strength  data  is  shown  in  Table 4.  Independent  t-tests  
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                          Table 2.  Number of subjects scoring an error for each factor 1,2. 

 
Male 

(N=1707) 
Female 

(N=1046) 
Factor  N % N % 
Factor 1 Poor Sagittal Flexion – Stance 559 32.8% 448 42.6% 
Factor 2 Valgus Knee & Feet Too Wide 428 25.1% 386 36.7% 
Factor 3 Toes Out & Knees Flexed  503 29.5% 154 14.6% 
Factor 4 Heelstrike & Uneven Footstrike 751 44.1% 273 26.0% 
Factor 5 Poor Sagittal Flexion – Landing 582 34.1% 472 44.9% 

1 Factors generated from factor analysis loading. 2  For items 1-15, a positive score was defined as an Error on 
at least 2 of 3 trials.  For items 16 & 17, a positive score was defined as Average on at least 2 of 3 trials or 
Poor/ Stiff on at least 1 of 3 trials. 
 

showed that males and females were significantly differ-
ent for all investigated anthropometric (height, weight, 
BMI, navicular drop, and Q-angle) and strength variables 
(Tables 3 and 4).   
 
Table 3. Subject biometrics. Data are means (±SD). 

 Males 
(n = 1,607) 

Females 
(n = 994) 

Height (m) 1.78 (.07) 1.66 (.07)  * 
Weight (kg) 77.4  (12.3) 63.0 (7.8) * 
Body Mass Index 24.3 (3.1) 22.9 (2.3) * 
Navicular Drop (mm) 7.5 (2.8) 7.0 (2.6) * 
Q-Angle (º) 8.6 (4.5) 11.6 (4.9) * 

  * p < 0.001 
 

Table 4. Muscle strength normalized to body mass (N·kg-1). 
Data are means (±SD). 

 Males 
(n = 1,607) 

Females 
(n = 994) 

Quadriceps  .49 (.09) .41 (.09) * 
Hamstrings .24 (.05) .21 (.05) * 
Hip external rotation .21 (.04) .17 (.03) * 
Hip internal rotation .19 (.04) .18 (.04) * 
Gluteus maximus .26 (.07) .23 (.07) * 
Gluteus minimus .34 (.08) .30 (.07) * 

  * p < 0.001 
 
Predicting poor landing 
Due to missing data values, univariate and multivariate 
regression models were analyzed for 2,734 participants 
(females = 1046; males = 1688). Univariate analysis for 
males indicated that low BMI, increased Q-angle, and 
poor gluteus medius strength were individually predictive 
of poor landing technique (higher LESS score).  However 
as a group, multivariate modelling showed extremely 
limited predictive value (combined R2=.016; p < 0.01) 
and only lower BMI and weak hip internal rotation 
strength significantly contributed to poorer landing tech-

nique (Table 5). For females, univariate analyses sug-
gested that weaker hamstrings and weaker gluteus medius 
strength were important predictors of poorer jump-landing 
(Table 6). However, in contrast to males, we were not 
able to strongly predict specific contributors to landing 
error in females with multivariate analysis (p = 0.098). 
Again, the predictive value of all these variables as a 
group was very limited (combined R2 = 0.014).   
 
Discussion 
 
Movement pattern differences can be assessed by the 
LESS 
The ability to quickly and reliably identify individuals at 
high risk of injury is critical to injury prevention efforts.  
Because high-risk movement patterns have been linked to 
ACL injury risk (Hewett et al., 2005; Krosshaug et al., 
2007), the ability to rapidly screen for these movement 
patterns could facilitate the implementation of large-scale 
injury prevention efforts. Our results indicate that a quali-
tative movement screen, the Landing Error Scoring Sys-
tem (LESS) can accurately characterize the jump-landing 
characteristics of a large cohort of males and females. 
Females demonstrated poorer overall landing technique 
(5.34 ± 1.51 vs. 4.65 ± 1.69 for males) and showed less 
knee flexion, less hip flexion and more valgus collapse. 
These results are similar to studies of common movement 
tasks using traditional laboratory biomechanics (Chappell 
et al., 2002; Hewett et al., 2006; Malinzak et al., 2001; 
Padua et al., 2009). Previous work has shown that LESS 
score is correlated with high-risk movement patterns as 
measured by traditional motion analysis (Padua et al., 
2009). Taken together these results suggest that the LESS 
accurately characterizes jump-landing movements. The 
results of the present investigation do not allow us to 
determine which differences are specifically correlated

 
                  Table 5. Univariate and multivariate regression results – Males. 

 Univariate 1 Multivariate 1 
Variable β SE t-value p-value β SE t-value p-value 

BMI -.091 .321 -3.77 <.005 * -.086 .014 -3.21     .001 * 
Q-Angle .053 .009 2.20 .03 * .028 .010 1.10 .27 
Navicular Drop  -.004 .014 -.18 .86 .007 .015 .28 .78 
Quadriceps -.046 .438 -1.89 .06 -.037 .549 -1.21 23 
Hip Ext. Rotators -.010 1.043 -.41 .68 .042 1.497 1.20 .23 
Hip Int. Rotators -.040 1.013 -1.66 .10 -.070 1.466 -2.00   .05 * 
Hamstrings <.001 .791 -.04 .97 .012 1.064 .38 .71 
Gluteus Maximus .021 .561 .86 .39 .040 .651 1.41 .16 
Gluteus Medius  -.050 .509 -2.06 .04 * -.046 .656 -1.48 .14 
*Statistically significant. 1 Univariate betas are not adjusted for any other variable; multivariate betas are adjusted for 
any other variables listed in the table.  
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           Table 6. Univariate and multivariate regression results – Females. 
 Univariate 1    Multivariate 1    
Variable β SE t-value p-value β SE t-value p-value 
BMI -.024 .020 -.77 .44 -.040 .022 -1.22 .22 
Q-Angle .026 .010 .85 .40 .020 .010 .64 .52 
Navicular Drop  -.017 .018 -.57 .57 -.020 .018 -.65 .52 
Quadriceps -.011 .554 -.36 .72 .045 .722 1.11 .29 
Hip Ext. Rotators -.023 1.426 -.73 .47 .041 1.931 .97 .33 
Hip Int. Rotators -.052 1.264 -1.70 .09 -.026 1.822 -.58 .57 
Hamstrings -.067 1.008 -2.17 .03 * -.070 1.387 -1.65 .10 
Gluteus Maximus -.005 .717 -.18 .86 .031 .786 .91 .37 
Gluteus Medius  -.081 .646 -2.6 .01 -.094 .847 -2.32 .02 * 

* Statistically significant. 1 Univariate betas are not adjusted for any other variable; multivariate betas are adjusted for 
any other variables listed in the table.       
 

with an increased risk of injury. The error of measurement 
for the LESS score is greater than observed gender differ-
ences, suggesting that individual variability may limit the 
predictive capacity of the LESS. However, the ability of 
the LESS to predict injury in the military academy popu-
lation is an area of ongoing study.  
 
Implications for injury risk based on Landing Error 
Patterns 
While singular aspects of jump-landing technique con-
tribute to high-risk landings, it is possible that a combina-
tion of multiple factors is more predictive of overall risk.  
We were able to determine common landing-error pat-
terns for females and males using factor analysis.  Strik-
ingly, each error pattern detected has been suggested in 
previous literature to contribute to ACL injury: 1) de-
creased sagittal flexion at initial ground contact (Chappell 
et al., 2007); 2) valgus knee (Ford et al., 2003; Hewett et 
al., 1999; 2005) and feet wide at initial contact; 3) toes 
out and knees flexed at initial contact (DiStefano et al., 
2009); 4) heelstrike landing and asymmetric footstrike 
landing (Boden et al., 2009); and 5) lack of sagittal flex-
ion over the landing (Chappell et al., 2007).  While both 
male and female cadets exhibited these combinations of 
high-risk movement, clear gender tendencies towards 
different patterns were detected (Table 2). Similar to 
previous reports, 42.6% of females in our cohort exhibited 
shallow sagittal flexion angles (trunk, hip, and knee) at 
ground contact (Factor 1) and 44.9% demonstrated poor 
knee flexion displacement over the entire landing phase 
(Factor 5). These flexion faults and propensity towards 
valgus during landing are consistent with many prior 
investigations (Chappell et al., 2002; 2007; Colby et al., 
2000; Malinzak et al., 2001). In contrast to these findings, 
a recent study reported females had increased knee flex-
ion at the time of ACL injury versus males (Krosshaug et 
al., 2007). However, knee and hip flexion may be task-
dependent, which may explain the differing results.  

We also found that females were more likely than 
males to land with an excessively wide stance in combi-
nation with knee valgus (Factor 2). This has not been 
previously reported in traditional biomechanical investi-
gations. This wider landing stance may represent an adap-
tive precursor to subsequent valgus collapse, or it may 
simply reflect a wider average pelvic width in female 
cadets. We are directly measuring pelvic width in an 
ongoing study. Analysis of that data may allow us to 

better describe the phenomenon of wide landing stance in 
females.   

Males exhibited different landing-error patterns 
than females. The most common male factor was heel-
strike landing/uneven footstrike during landing (Factor 4), 
which occurred in 44.1% of our male population.  Males 
were also more likely than females to land with “toes-out” 
(tibial external rotation) (Factor 3).  These male error 
patterns have only recently been reported (Boden et al., 
2009; Krosshaug et al., 2007) and are less familiar, per-
haps less understood than female themes. While cadaveric 
and biomechanical modelling studies suggest that ACL 
strain is greater with knee internal rotation, analyses of 
actual injury mechanism describe an external rotatory 
force on the knee, suggesting this position is indeed high-
risk (Shimokochi and Shultz, 2008). The effects of 
asymmetric foot strike and a heels-first landing are less 
discussed in ACL injury literature.  One possible implica-
tion comes from preliminary work by Boden and col-
leagues who propose that a flat-foot landing reduces the 
ability of the calf muscles to dampen the ground reaction 
forces before they reach the knee (Shimokochi and 
Shultz, 2008).   

 
Predicting poor landing 
In addition to classifying common patterns of movement, 
we attempted to identify relationships between measured 
anthropometric and strength elements and observed land-
ing movement patterns. In the univariate analysis of indi-
vidual variables, our results suggest that low BMI con-
tributes more to jump-landing movements in male cadets 
than in female cadets. The relationship between this find-
ing and previous reports of higher BMI being associated 
with increased injury in military and other populations is 
unclear (Jones et al., 1986; Knapik et al., 1991; Uhorchak 
et al., 2003). One possible explanation is that fatigue 
could preferentially worsen movement patterns in those 
with high BMI. Future studies comparing movement 
patterns under fatigued and non-fatigued conditions 
would facilitate further analysis. We also found that hip 
rotator strength exerts minimal influence on poor landing 
technique in either gender. This appears to contrast with 
recent thinking in injury prevention and rehabilitation 
where strengthening hip rotators is thought to reduce 
injury susceptibility (Hewett et al., 1999; Mandelbaum et 
al., 2005). Our pending analysis of traditional biome-
chanical measures during the jump-landing task may help 
explain these apparently contradictory results.   
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Most importantly, our results clearly demonstrate 
that muscle strength and anthropometric factors do NOT 
contribute significantly to landing movement patterns as 
measured by the LESS. Multivariate analysis showed very 
little contribution from anthropometric and strength val-
ues to overall movement patterns (R2 = 0.016 for males, 
0.014 for females). This is a novel finding. The primary 
tenants of many ACL injury prevention programs aver 
that increased lower extremity muscular will translate to 
improved movement patterns during athletic manoeuvres. 
In contrast, our findings suggest that simply changing an 
athlete’s alignment, BMI, or muscle strength may not 
ultimately improve his or her movement patterns. Rather, 
landing movements seem to be primarily determined by 
characteristics other than strength, alignment, or body 
mass. Future investigations should verify this lack of 
correlation using traditional biomechanical methods. If 
confirmed, the absence of a correlation in anthropometrics 
and muscle strength with an individual’s movement pat-
tern would necessitate a paradigm shift in future injury 
prevention intervention design.  

 
Study limitations 
We caution that the use of a military population may limit 
the generalizability of these results to all populations of 
young athletes.  Specifically, the overall athleticism, BMI, 
or fitness of the military academy population may be 
significantly different than that of other populations. Ad-
ditionally, although we have measured landing movement 
patterns in terms of “errors”—a common practice in 
qualitative movement screening—we recognize that dif-
ferences in movement patterns cannot definitively be 
classified as errant unless prospectively linked to injury 
risk.    
 
Conclusion 
 
Male and female military cadets have differences in jump-
landing technique as assessed through a qualitative 
movement screen. Females demonstrate distinct landing 
movement patterns versus males. Landing-error patterns 
more common in males and those more common in fe-
males contain features that have been previously postu-
lated to increase ACL injury risk. Most importantly, BMI, 
navicular drop, Q-angle, and muscular strength do not 
significantly predict movement patterns in either male or 
female cadets.  We are collecting ACL injury incidence 
data from this cohort over their 4-year academy careers. 
This injury data may allow us to link prospective, modifi-
able risk factors with LESS scores, and ultimately with 
the risk of subsequent ACL injury. 
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Key points 
 
• Important differences in male and female landing 

technique can be captured using a qualitative 
movement screen: the Landing Error Scoring Sys-
tem (LESS) 

• Female cadets were more likely to land with shallow 
sagittal flexion, wide stance width, and more pro-
nounced knee flexion. 

• Male cadets were more likely to exhibit a heel-strike 
or asymmetric foot-strike and to land with toe out. 

• Lower extremity muscle strength, Q-angle, and 
navicular drop do not significantly predict landing 
movement pattern in male or female cadets.  
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Appendix 
                                                                                  

LESS Item Scoring 
 

 
LESS Item Operational Definition 

Camera 
View 

Error 
Condition 

LESS 
Score 

1 Knee flexion angle 
at initial contact 

At the time point of initial contact, if the knee of the test leg 
is flexed more than 30 degrees, score YES.  If the knee is not 
flexed more than 30 degrees, score NO.  

Side No Y=0 
N=1 

2 Hip flexion angle at 
initial contact 

At the time point of initial contact, if the thigh of the test leg 
is in line with the trunk then the hips are not flexed and score 
NO.  If the thigh of the test leg is flexed on the trunk, score 
YES. 

Side No Y=0 
N=1 

3 Trunk flexion angle 
at initial contact 

At the time point of initial contact, if the trunk is vertical or 
extended on the hips, score NO.  If the trunk is flexed on the 
hips, score YES. 

Side No Y=0 
N=1 

4 Ankle plantar-
flexion angle at 
initial contact 

If the foot of the test leg lands toe to heel, score YES.  If the 
foot of the test leg lands heel to toe or with a flat foot, score 
NO. 

Side No Y=0 
N=1 

5 Knee valgus angle 
at initial contact 

At the time point of initial contact, draw a line straight down 
from the center of the patella.  If the line goes through the 
midfoot, score NO.  If the line is medial to the midfoot, score 
YES. 

Front Yes Y=1 
N=0 

6 Lateral trunk flex-
ion angle at initial 
contact 

At the time point of initial contact, if the midline of the trunk 
is flexed to the left or the right side of the body, score YES.  
If the trunk is not flexed to the left or right side of the body, 
score NO. 

Front Yes Y=1 
N=0 

7 Stance width – 
Wide 

Once the entire foot is in contact with the ground, draw a line 
down from the tip of the shoulders.  If the line on the side of 
the test leg is inside the foot of the test leg then score greater 
than should width (wide), and score YES.  If the test foot is 
internally or externally rotated, grade the stance width based 
on heel placement. 

Front Yes Y=1 
N=0 

8 Stance width – 
Narrow 

Once the entire foot is in contact with the ground, draw a line 
down from the tip of the shoulders.  If the line on the side of 
the test leg is outside of the foot then score less than shoulder 
width (narrow), score YES.  If the test foot is internally or 
externally rotated, grade the stance width based on heel 
placement. 

Front Yes Y=1 
N=0 

9 Foot position – Toe 
In 

If the foot of the test leg is internally rotated more than 30 
degrees between the time period of initial contact and max 
knee flexion, then score YES.  If the foot is not internally 
rotated more than 30 degrees between the time period of 
initial contact to max knee flexion, score NO. 

Front Yes Y=1 
N=0 

10 Foot position – Toe 
Out 

If the foot of the test leg is externally rotated more than 30 
degrees between the time period of initial contact and max 
knee flexion, then score YES.  If the foot is not externally 
rotated more than 30 degrees between the time period of 
initial contact to max knee flexion, score NO. 

Front Yes Y=1 
N=0 

11 Symmetric initial 
foot contact 

If one foot lands before the other or if one foot lands heel to 
toe and the other lands toe to heel, score NO.  If the feet land 
symmetrically, score YES. 

Front No Y=0 
N=1 

12 Knee flexion dis-
placement 

If the knee of the test leg flexes 45 degrees more than the 
angle at the position of initial contact to max knee flexion, 
score YES.  If the knee of the test leg does not flex more 
than 45 degrees, score NO. 

Side No Y=0 
N=1 

13 Hip flexion at max 
knee flexion 

If the thigh of the test leg flexes more on the trunk from 
initial contact to max knee flexion angle, score YES.  If the 
thigh does not flex more on the trunk, score NO. 

Side No Y=0 
N=1 

14 Trunk flexion at 
max knee flexion 

If the trunk flexes more from the point of initial contact to 
max knee flexion, score YES.  If the trunk does not flex 
more, score NO.   

Side No Y=0 
N=1 

15 Knee valgus dis-
placement 

At the point of max knee valgus on the test leg, draw a line 
straight down from the center of the patella.  If the line runs 
through the great toe or is medial to the great toe, score YES.  
If the line is lateral to the great toe, score NO. 

Front Yes Y=1 
N=0 
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16 Joint displacement Watch the sagittal plan motion at the hips and knees from 
initial contact to max knee flexion angle.  If the subject goes 
through large displacement of the trunk, hips, and knees then 
score SOFT.  If the subject goes through some trunk, hip, 
and knee displacement, but not a large amount, score AV-
ERAGE.  If the subject goes through very little, if any trunk, 
hip, and knee displacement, score STIFF. 

Side Average 
or Stiff 
(double 
penalty 

for Stiff) 

Soft=0 
Avg=1 
Stiff=2 

17 Overall impression Score EXCELLENT if the subject displays a soft landing 
and no frontal plane motion at the knee.  Score POOR if the 
subject displays a stiff landing and large frontal plane motion 
at the knee.  All other landings, score AVERAGE. 

Side, 
Front 

Average 
or Poor 
(double 
penalty 

for Poor) 

Ex=0 
Avg=1 
Poor=2 

 
 
 
 
 




